Some authors define $y=\sec^{-1}x \Leftrightarrow \sec y=x$ and $y \in \Bigl[\left[0, {{\pi} \over {2}}\right) \cup \left({{\pi} \over {2}}, \pi \right]\Bigr]$.
Show that with this definition we have
$${{d} \over {dx}}\left(\sec^{-1}x\right)= {{1} \over {|x|\sqrt{x^2-1}}}, |x| \gt 1$$
Sol)
Let $y=\sec^{-1}x$ where $|x| \gt 1$
Then,
$ y=\sec^{-1}x$
$\implies x=\sec y$
$\implies {{dx} \over {dy}}= \sec y \tan y \rightarrow \sec y \tan y={{\sin y} \over {\cos^2 y}} \rightarrow$ 위에 주어진 범위에서 $\sin y \gt 0$ $\therefore \sec y \tan y \gt 0$
$\implies {{dy} \over {dx}} = {{1} \over {\sec y \tan y}}$
$\implies \left({{dy} \over {dx}}\right)^2 = {{1} \over {\sec^2 y \tan^2 y}} = {{1} \over {\sec^2 y \left(\sec^2-1\right)}}={{1} \over {x^2 \left(x^2-1\right)}}$
$\implies \left|{{dy} \over {dx}}\right|={{1} \over {|x| \sqrt{x^2-1}}}$
$$\therefore {{d} \over {dx}}\left(\sec^{-1}x\right)= {{1} \over {|x|\sqrt{x^2-1}}}, |x| \gt 1$$
'학교' 카테고리의 다른 글
Calculus Quiz 3-(2) (0) | 2018.04.12 |
---|---|
Calculus Quiz 3-(1) (0) | 2018.04.12 |
Calculus Quiz 1 (0) | 2018.04.12 |
미적분학(Calculus) 잡다한 문제 5 (0) | 2017.09.20 |
미적분학(Calculus) 잡다한 문제 4 (0) | 2017.09.20 |