Evaluate the integrals

$$\int \frac{{\mathrm{sech}}^2 x}{2+\tanh x} dx$$


Sol)

$2+\tanh x=t$로 치환하면, ${\mathrm{sech}}^2 x \, dx=dt$

$$\int \frac{{\mathrm{sech}}^2 x}{2+\tanh x} dx = \int\frac{1}{t} dt = \ln t +C$$


$$ \therefore \int \frac{{\mathrm{sech}}^2 x}{2+\tanh x} dx = \ln{\left(\tanh x +2 \right)} + C$$

'학교' 카테고리의 다른 글

Calculus Quiz 6  (0) 2018.04.12
Calculus Quiz 5-(2)  (0) 2018.04.12
Calculus Quiz 4  (0) 2018.04.12
Calculus Quiz 3-(2)  (0) 2018.04.12
Calculus Quiz 3-(1)  (0) 2018.04.12

+ Recent posts