Evaluate the integrals
$$\int \frac{{\mathrm{sech}}^2 x}{2+\tanh x} dx$$
Sol)
$2+\tanh x=t$로 치환하면, ${\mathrm{sech}}^2 x \, dx=dt$
$$\int \frac{{\mathrm{sech}}^2 x}{2+\tanh x} dx = \int\frac{1}{t} dt = \ln t +C$$
$$ \therefore \int \frac{{\mathrm{sech}}^2 x}{2+\tanh x} dx = \ln{\left(\tanh x +2 \right)} + C$$
'학교' 카테고리의 다른 글
Calculus Quiz 6 (0) | 2018.04.12 |
---|---|
Calculus Quiz 5-(2) (0) | 2018.04.12 |
Calculus Quiz 4 (0) | 2018.04.12 |
Calculus Quiz 3-(2) (0) | 2018.04.12 |
Calculus Quiz 3-(1) (0) | 2018.04.12 |