Processing math: 100%

Find the value of the constant $C$ for which the integral

0(xx2+1C3x+1)dx

converges. Evaluate the integral for value of $C$


Sol)

limtt0(xx2+1C3x+1)dx

=limt(t0xx2+1dxt0C3x+1dx)

=limt{[12ln|x2+1|]t0[C3ln|3x+1|]t0}

=limt{12ln(t2+1)C3ln(3t+1)}

=limt{ln(t2+1)12ln(3t+1)C3}

=limt{ln(t2+1)12(3t+1)C3}


여기서 $t$가 $\infty$로 가므로 $\ln$속 분모, 분자의 최고차항의 계수가 같아야 한다.

212=1c3

C=3




+ Recent posts